Летом 1983 года над Парижем величественно проплыл диковинный аэростат — точная копия первого монгольфьера. |
Наш журнал неоднократно публиковал материалы, посвященные проблемам проектирования, строительства и эксплуатации аэростатических летательных аппаратов. В них рассказывалось не только о современных дирижаблях, разработанных по классической схеме, но и об аппаратах типа «диск», «летающее крыло», дирижаблях с управляемым вектором тяги двигателей, с дополнительным несущим винтом вертолетного типа (геликостатах). Сегодня мы предлагаем вниманию читателей подборку статей о дирижаблях, которым не нужны ни взрывоопасный водород, ни безопасный, но далеко не дешевый гелий.
В июне 1783 года братья Жозеф и Этьен Монгольфье запустили воздушный шар, наполненный горячим дымом. Спустя полгода на подобном шаре совершил первый в мире полет человек, тем самым открыв эру воздухоплавания. Только век монгольфьеров оказался коротким — уже в конце XIX столетия большинство аэростатов, и тем более дирижаблей, стали наполнять водородом, а потом безопасным гелием. Но почему же классический монгольфьер «ушел в отставку» и в наши дни, когда речь заходит о возрождении летательных аппаратов легче воздуха, под этим термином подразумевают те же дирижабли, а о монгольфьерах вспоминают лишь спортсмены и любители экзотических путешествий?
Начнем с того, что подъемная сила кубометра воздуха, нагретого даже до 1000° С, уступает подъемной силе водорода и гелия. Впрочем, вряд ли в обозримом будущем можно будет построить летательный аппарат, элементы которого и оболочка могли бы долго и надежно служить в условиях столь высоких температур.
Однако почему проектировщикам не ограничиться, скажем, 800° С? Правда, подъемная сила воздуха составит не более 72% такого же показателя для водорода и 78% — для гелия. При этом металлические узлы и детали дирижабля нагреются только до 250—350° С. Создать легкие и жаропрочные конструкции, рассчитанные на длительную эксплуатацию, в подобных условиях уже сейчас возможно.
Помешала развитию монгольфьеров незначительная дальность полета. Она зависела от запаса топлива для горелки. При этом потери тепла в полете оказались значительными. Однако автор этих строк не склонен считать перечисленные выше проблемы неразрешимыми.
Начнем с того, что воздухоплавателям совсем необязательно брать на борт особый запас топлива для горелки. Ничто не мешает использовать выхлопные газы маршевых двигателей, тем более что вместе с ними теряется до 70% тепла, выделяющегося при сгорании топлива.
Потерь тепла через оболочку можно избежать, выполнив ее двухслойной и оснастив простыми и легкими устройствами, уменьшающими теплоотдачу. Кстати, одним из первых идею аэростата с двойной оболочкой и подогревом несущего газа в полете выдвинул в 1863 году не кто иной, как известный писатель-фантаст Ж. Верн в романе «Пять недель на воздушном шаре». Судя же по моим расчетам, потери тепла можно удерживать на вполне приемлемом уровне 70 Вт/м². Причем средняя температура жестких конструкционных элементов воздушного корабля вряд ли превысит 250° С.
Естественно, что термодирижабли могут выполняться по-разному. К примеру, между их внешней и внутренней оболочками можно разместить жесткий каркас. Внутреннюю оболочку, нагревающуюся до 450° С, целесообразно собирать из листов жаростойкой стали «бритвенной» толщины 0,08—0,1 мм. Внешнюю оболочку, температура которой превысит атмосферную не более, чем на 20° С, лучше изготовлять из легкого листового алюминия или тонкого стеклопластика. Регулируемый нагрев воздуха во внутренней оболочке будет производиться через трубу-теплообменник, по которой пропускаются выхлопные газы двигателей.
При снижении термодирижабля часть выхлопных газов, поступающих в теплообменник, можно разбавить холодным забортным воздухом, чтобы уменьшить подъемную силу, а при угрозе обледенения экипаж переRпустит газ по трубопроводу в пространство между оболочками, чтобы нагреть внешнюю,
В зависимости от назначения и характера полетного задания к нижней части термодирижабля прикрепляется грузовая платформа или пассажирские каюты. Роль шасси сыграют четыре лыжи, смонтированные на несущих фермах.
...В последние годы в разных странах появлялись самые причудливые проекты дирижаблей — круглых, стреловидных, вытянутых по вертикали и т. п. Мы приняли за основу классический, сигарообразный, цельнометаллический дирижабль. Попробуем определить его оптимальные параметры.
К ним в первую очередь относятся удлинение (то есть отношение длины к диаметру) и скорость полета. Увеличение удлинения приводит к уменьшению лобового сопротивления и равной ему силы
кг, вследствие уменьшения \(Cx\) и \(S\) (здесь \(Cx\) — коэффициент лобового сопротивления, \(р\) — плотность воздуха, \(S\) — площадь миделя, \(g\) — ускорение силы тяжести, \(W\) — скорость полета).
Вместе с тем с увеличением удлинения возрастает отношение площади оболочки к объему дирижабля, что неизбежно повлечет возрастание массы конструкции. Мало того, с обширной оболочки в атмосферу уйдет больше тепла, в результате чего уменьшится подъемная сила, и тогда придется ограничить грузоподъемность корабля.
А теперь представьте термодирижабль, допустим, с удлинением 7, массой 100 т, грузоподъемностью 100 т, в танках которого 20 т горючего. Тогда, при заданном нагреве воздуха в оболочке до 600° С объем аппарата составит 270 тыс. м³, длина 294 и диаметр 42 м.
Как видно, минимальный расход топлива на дирижабле такого объема будет достигнут при удлинении 8—10 (за счет уменьшения лобового сопротивления), при скоростях 170—220 км/ч и при двигателях мощностью 1 тыс. л. с.
Схема возможного устройства термодирижабля. |
Теперь подведем итоги и сопоставим достоинства и недостатки термодирижаблей и цеппелинов. Начнем с того, что создателям последних так и не удалось решить проблему предотвращения утечки несущего газа, а разработанные
ими устройства утяжеляли и усложняли конструкцию. Оболочки же термодирижабля необязательно должны быть герметичными. Не нужен ему взрывоопасный водород и дорогостоящий гелий — воздуха в атмосфере предостаточно, выхлопные газы двигателей все равно выбрасываются, а при незначительном разрыве оболочки аппарат просто мягко опустится из-за уменьшения подъемной силы.
График, показывающий зависимость подъемной силы воздуха от его температуры |
При вертикальном маневре газонаполненного дирижабля приходилось сбрасывать балласт или выпускать часть газа. У термодирижабля подъем и спуск будут осуществляться только за счет подогрева или охлаждения воздуха внутри оболочки.
Крайне острой для классических дирижаблей была проблема стоянки. Наполненный газом цеппелин практически невесом и подвластен воле стихии. Термодирижабль, посаженный «на грунт» всеми 100 т своей массы, при любом ветре будет устойчив, как стена! Судя по расчетам, он спокойно выдержит порывы ветра в 4—5 баллов.
Пилотирование газонаполненного дирижабля связано со специфическими трудностями. В длительном полете, по мере расходования топлива, уменьшается вес аппарата и он начинает непроизвольно набирать высоту. В результате воздухоплавателям приходится выпускать за борт несущий газ. Для термодирижабля полет на постоянной высоте с любой нагрузкой не представляет проблем. Как отмечалось выше, термодирижаблю не страшно обледенение.
Упрощенная сравнительно с цеппелинами конструкция определит и сравнительно несложную технологию производства подобных аппаратов, и длительный срок их службы.
Рассмотренный выше проект термодирижабля объемом 270 тыс. м³ будет обладать завидными характеристиками. При запасе топлива 20 т он пролетит более 15 тыс. км, а 50 т — совершит беспосадочное кругосветное путешествие. При выключенных двигателях, но с запасом горючего 20 т для подогрева воздуха в оболочке с помощью горелок термодирижабль сможет дрейфовать 18 суток, что, несомненно, окажется весьма полезным для ученых.
Зависимость коэффициента лобового сопротивления Сх от удлинения |
А теперь остановимся на недостатках термодирижабля. Первый и главный из них — это высокая температура воздуха внутри оболочки. Однако ничто не мешает оснастить корабль эффективной системой охлаждения узлов, подвергающихся наиболее интенсивному нагреву. Конечно, потребуются определенные исследовательские работы в этом направлении, и здесь должны сказать свое веское слово специалисты по строительной механике летательных аппаратов, в частности, по конструированию каркасных систем и оболочек, работающих при переменных высоких температурах.
Второй недостаток — это наличие двух оболочек из тонколистного металла. Уже это обстоятельство может утяжелить конструкцию, сделать ее более дорогой. Но... классический дирижабль с многочисленными газовыми мешками, баллонетами, системами управления ими, внутренними расчалками и переборками вряд ли окажется дешевле термодирижабля.
Третьим недостатком термодирижабля можно счесть необходимость расходовать топливо для ввода его в действие и поддержания «на плаву». В частности, для подогрева воздуха в оболочке перед стартом придется сжечь около 4,5 т топлива, а для того, чтобы дрейфующий корабль находился на постоянной высоте, нужно будет расходовать около 200 кг горючего ежечасно. Поэтому при длительных стоянках целесообразно выключать систему подогрева воздуха.
Как и во всяком новом деле, в нашем случае остается еще много нерешенных, невыясненных вопросов, но преимущества термодирижабля настолько очевидны, что есть все основания считать его одним из наиболее эффективных способов решения проблем воздухоплавания.
Комментариев нет:
Отправить комментарий