Материалы, опубликованные в журналах и не входящие в статьи, можно увидеть на страницах номеров:

18 июня 2021

Занимательная математика, 1935-06

На эскалаторе метро

Стоя неподвижно на ступени эскалатора московского метро, человек доставляется этой движущейся лестницей от платформы до уровня улицы в течение одной минуты. Тот же человек, взбегая по ступеням неподвижного эскалатора, может добраться до верху в 50 сек.

Во сколько времени доберется до уровня улицы этот человек, если стянет взбегать по поднимающемуся эскалатору?

Многие затрудняются в решении этой задачи, хотя она представляет собою не что иное, как новую форму древней задачи о бассейнах, существующей уже две тысячи лет.

Рассуждаем так. Эскалатор ежесекундно поднимается на 160 всей высоты. Человек на неподвижном эскалаторе в одну секунду взбегает на 150 полной высоты подъема. Поэтому на движущемся эскалаторе, когда обе скорости складываются, он поднимается в течение секунды на долю 160+150=11300 полной высоты. Теперь легко уже найти продолжительность всего подъема человека, взбегающего на движущемся эскалаторе. Она равна:

1÷1300= около 27.

Человек взбежит вверх в 27 сек.

Какова средняя скорость?

Вычисление средней скорости представляется каждому весьма простым делом. Однако вот весьма несложная на вид задача, в которой требуется определить среднюю скорость, но которую далеко не все читатели смогут решить.

Автомобиль проехал расстояние между двумя городами со скоростью 30 километров в час и возвратился со скоростью 20 километров в час. Какова была средняя скорость его езды?

Не спешите с ответом. Могу с уверенностью сказать, что решение, которое у вас сейчас в уме, —  ошибочно.

Большинство, не размышляя долго, находят арифметическое среднее между 30 и 20, т. е. берут их полусумму 

30+202=25 

и таким образом узнают, что средняя скорость автомобиля в упомянутую поездку равна 25 километрам в час.

Как ни странно, но это простое и казалось бы бесспорное решение — неверно. Оно было бы верно в том лишь случае, если бы поездка туда и поездка обратно длились одинаковое время. Но в нашем случае обратная поездка должна была отнять больше времени, чем езда туда, — во столько раз больше, во сколько скорость езды туда (30 километров в час) больше скорости возвращения (20 километров в час), а именно 32 раза. Необходимо принять в расчет, что со скоростью 30 километров в час автомобиль двигался 23 того времени, в течение которого он ехал со скоростью 20 километров в час. Только учтя это обстоятельство, мы сможем прийти к правильному ответу.

Лучше всего прибегнуть при ее решении к «языку алгебры», т. е. к уравнению; арифметическое решение, пожалуй, сложнее.

Обозначим расстояние между городами в километрах буквой l. На поездку туда автомобиль употребил l30 часов, а на возвращение l20 час.

На весь пробег туда и обратно он употребил

l30+l20 час.

Средняя скорость измеряется отношением длины пройденного пути (20 к затраченному времени. Значит она выразится так:

2l÷(l30+l20)=2÷(130+120).

Выполнив вычисление, получаем:

2÷(130+120)=2÷560=24

Итак, правильный ответ: 24 километра в час, а не 25, как отвечают обычно.

Я. Перельман

Комментариев нет:

Отправить комментарий

Последняя добавленная публикация:

Друг и учитель молодёжи | ТМ 1939-12

21 декабря текущего года исполняется 60 лет со дня рождения великого вождя трудящегося человечества, любимого друга и мудрого учителя советс...

Популярные публикации за последний год

Если Вы читаете это сообщение, то очень велика вероятность того, что Вас интересуют материалы которые были ранее опубликованы в журнале "Техника молодежи", а потом представлены в сообщениях этого блога. И если это так, то возможно у кого-нибудь из Вас, читателей этого блога, найдется возможность помочь автору в восстановлении утраченных фрагментов печатных страниц упомянутого журнала. Ведь у многих есть пыльные дедушкины чердаки и темные бабушкины чуланы. Может у кого-нибудь лежат и пылятся экземпляры журналов "Техника молодежи", в которых уцелели страницы со статьями, отмеченными ярлыками Отсутствует фрагмент. Автор блога будет Вам искренне признателен, если Вы поможете восстановить утраченные фрагменты любым удобным для Вас способом (скан/фото страницы, фрагмент недостающего текста, ссылка на полный источник, и т.д.). Связь с автором блога можно держать через "Форму обратной связи" или через добавление Вашего комментария к выбранной публикации.